skip to main content


Search for: All records

Creators/Authors contains: "Zou, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Sub‐auroral polarization streams (SAPS) are one of the most intense manifestations of magnetosphere‐ionosphere coupling. Magnetospheric energy transport to the ionosphere within SAPS is associated with Poynting flux and the precipitation of thermal energy (0.03–30 keV) plasma sheet particles. However, much less is known about the precipitation of high‐energy (≥50 keV) ions and electrons and their contribution to the low‐altitude SAPS physics. This study examines precipitation within one SAPS event using a combination of equatorial THEMIS and low‐altitude DMSP and ELFIN observations, which, jointly, cover from a few eV up to a few MeV energy range. Observed SAPS are embedding the ion isotropy boundary, which includes strong 300–1,000 keV ion precipitation. SAPS are associated with intense precipitation of relativistic electrons (≤3 MeV), well equatorward of the electron isotropy boundary. Such relativistic electron precipitation is likely due to electron scattering by electromagnetic ion cyclotron waves at the equator.

     
    more » « less
  2. Introduction: Magnetopause reconnection is known to impact the dayside ionosphere by driving fast ionospheric flows, auroral transients, and high-density plasma structures named polar cap patches. However, most of the observed reconnection impact is limited to one hemisphere, and a question arises as to how symmetric the impact is between hemispheres. Methods: We address the question using interhemispheric observations of poleward moving radar auroral forms (PMRAFs), which are a “fossil” signature of magnetopause reconnection, during a geomagnetic storm. We are particularly interested in the temporal repetition and spatial structure of PMRAFs, which are directly affected by the temporal and spatial variation of magnetopause reconnection. PMRAFs are detected and traced using SuperDARN complemented by DMSP, Swarm, and GPS TEC measurements. Results: The results show that PMRAFs occurred repetitively on time scales of about 10 min. They were one-to-one related to pulsed ionospheric flows, and were collocated with polar cap patches embedded in a Tongue of Ionization. The temporal repetition of PMRAFs exhibited a remarkably high degree of correlation between hemispheres, indicating that PMRAFs were produced at a similar rate, or even in close synchronization, in the two hemispheres. However, the spatial structure exhibited significant hemispherical asymmetry. In the Northern Hemisphere, PMRAFs/patches had a dawn-dusk elongated cigar shape that extended >1,000 km, at times reaching >2,000 km, whereas in the Southern Hemisphere, PMRAFs/patches were 2–3 times shorter. Conclusion: The interesting symmetry and asymmetry of PMRAFs suggests that both magnetopause reconnection and local ionospheric conditions play important roles in determining the degree of symmetry of PMRAFs/patches. 
    more » « less
    Free, publicly-accessible full text available July 13, 2024
  3. Dynamic mesoscale flow structures move across the open field line regions of the polar caps and then enter the nightside plasma sheet where they can cause important space weather disturbances, such as streamers, substorms, and omega bands. The polar cap structures have long durations (apparently at least ∼1½ to 2 h), but their connections to disturbances have received little attention. Hence, it will be important to uncover what causes these flow enhancement channels, how they map to the magnetospheric and magnetosheath structures, and what controls their propagation across the polar cap and their dynamic effects after reaching the nightside auroral oval. The examples presented here use 630-nm auroral and radar observations and indicate that the motion of flow channels could be critical for determining when and where a particular disturbance within the nightside auroral oval will be triggered, and this could be included for full understanding of flow channel connections to disturbances. Also, it is important to determine how polar cap flow channels lead to flow channels within the auroral oval, i.e., the plasma sheet, and determine the conditions along nightside oval/plasma sheet field lines that interact with an incoming polar cap flow channel to cause a particular disturbance. It will also be interesting to consider the generality of geomagnetic disturbances being related to connections with incoming polar cap flow channels, including the location, time, and type of disturbances, and whether the duration and expansion of disturbances are related to flow channel duration and to multiple flow channels. 
    more » « less
  4. Abstract

    Energetic electron precipitation from the equatorial magnetosphere into the atmosphere plays an important role in magnetosphere‐ionosphere coupling: precipitating electrons alter ionospheric properties, whereas ionospheric outflows modify equatorial plasma conditions affecting electromagnetic wave generation and energetic electron scattering. However, ionospheric measurements cannot be directly related to wave and energetic electron properties measured by high‐altitude, near‐equatorial spacecraft, due to large mapping uncertainties. We aim to resolve this by projecting low‐altitude measurements of energetic electron precipitation by ELFIN CubeSats onto total electron content (TEC) maps serving as a proxy for ionospheric density structures. We examine three types of precipitation on the nightside: precipitation of <200 keV electrons in the plasma sheet, bursty precipitation of <500 keV electrons by whistler‐mode waves, and relativistic (>500 keV) electron precipitation by EMIC waves. All three types of precipitation show distinct features in TEC horizontal gradients, and we discuss possible implications of these features.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    Magnetic reconnection at the magnetopause has long been studied with multi‐spacecraft observations. In this work, data from the five satellite THEMIS mission during the years of 2008–2010 are used to generate statistics regarding the spatial extent of magnetopause reconnection. The presence of a reconnecting magnetopause is determined with the Walén relation as two satellites cross the magnetopause simultaneously. In some cases both satellites measure reconnection whereas in others one satellite measures reconnection and the other does not. This study finds that two spacecraft are more likely to observe a contiguous reconnection region the closer they are spatially, and that reconnection is not always extended around the entire magnetopause. Plasmaβgradient drifts are investigated as a cause of local reconnection suppression. Spacecraft position along the magnetopause flanks is also investigated as a possible spatial limitation to reconnection due to changes in shear flow or boundary thickness.

     
    more » « less
  7. Abstract

    We report the first observations of the association between equatorward extending streamers and overshielding using the THEMIS all‐sky imagers and ground magnetometers. Because auroral streamers indicate plasma sheet flow bursts, these observations uncover the effect of flow bursts on overshielding. Results show that, in general, bright equatorward extended streamers were associated with an increase in equatorial electrojet (EEJ) on the nightside and a decrease in the dayside EEJ, indicating a striking correspondence between auroral streamers and overshielding conditions. Thus, the driving of overshielding at equatorial latitudes can be identified via bright equatorward extended streamers, indicating that flow bursts are an alternate means to discern the earthward injections that increase the region 2 field aligned currents and associated overshielding electric fields. Repetitive auroral streamers were associated with repetitive overshielding, resulting in a stepwise development of the dayside and nightside EEJ. The stepwise intensifications were also observed in the midlatitude positive bay and Pi2 pulsations. Our results could explain the occurrence of overshielding conditions at equatorial latitudes during substorms and nonsubstorm times without a northward turning of IMF‐Bz. As seen through streamers, the localized current structures (wedgelets) associated with flow bursts giving injection that leads to overshielding is titled northeast‐to‐southwest. Our results add a new element to the understanding of high‐to‐low latitude electrodynamical coupling by demonstrating the association between bright equatorward extended auroral streamers and enhanced shielding electric fields caused by earthward injections associated with flow bursts.

     
    more » « less